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Ipip install scikit-surprise

Requirement already satisfied: scikit-surprise in /usr/local/lib/python3.9/
site-packages (1.1.1)

Requirement already satisfied: scipy>=1.0.0 in /usr/local/lib/python3.9/sit
e—packages (from scikit-surprise) (1.6.0)

Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.9/sit
e—packages (from scikit-surprise) (1.0.0)

Requirement already satisfied: six>=1.10.0 in /usr/local/Cellar/protobuf/3.
14.0/1libexec/lib/python3.9/site-packages (from scikit-surprise) (1.15.0)
Requirement already satisfied: numpy>=1.11.2 in /usr/local/lib/python3.9/si
te—packages (from scikit-surprise) (1.22.3)

Index

Introduction to Recommendation System

Exploratory Data Analysis(EDA)

Content based filtering

Collaborative Filtering
= Memory based collaborative filtering
o User-ltem Filtering
o Item-Item Filtering
= Model based collaborative filtering
o Single Value Decomposition(SVD)
o SVD++
e Evaluating Collaborative Filtering using SVD
e Hybrid Model

Introduction to Recommendation System
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A recommendation system is any system that automatically
suggests content, products or serivces which should interest
customers based on their preferences.

Nhy do humans learn so fast?

Why recommendation system is useful for
orgnization?

- Help to increase the site's page views, dwell time, click-through rate,
and retention

- Help generate more advertising revenue
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- Increase upselling and crossselling

What Other Items Do Customers Buy After Viewing This Item?
Relevant:

BOB Revolution Flex Stroller, Black =
ReA s (a3 items/message,
$384.00

-

BOB Single Snack Tray, Black
FRHA T (120
$26.59

Bob Stroller Handlebar Console with Tire Pump, Single

Yodededfeds (a3
$32.69

BOB Infant Car Seat Adapter for Chicco Single Strollers
r[ i Pordefeds (166

$48.95

Price for all three: $117.02 /

Add all three to Cart Add all three to Wish List

Show availability and shipping details

¥ This item: Canon PowerShot ELPH 115 16MP Digital Camera (Blue) $99.50

I# SanDisk Ultra 16GB SDHC Class 10/UHS-1 Flash Memory Card Speed Up To 30MB/s- SDSDU-016G-U46 ...
$12.53

¥ Case Logic TBC-302 FFP Compact Camera Case (Black) $4.99

How we build Recommendation Engine ?

Historical data
of Recommendations

users
and
products/items/services

Movie recommendation system
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Recommender systems are one of the most successful and widespread application of
machine learning technologies in business. You can find large scale recommender

systems in retail, video on demand, or music streaming.

e Examples of recommendation systems are:
1. Offering news articles to on-line newspaper readers, based on a prediction of
reader interests.
2. Offering customers of an on-line retailer suggestions about what they might like
to buy, based on their past history of purchases and/or product searches.
3. Recommending movies to user based on there previous watch

Load Libraries

from math import sqrt

import pandas as pd

import numpy as np

import seaborn as sns

from matplotlib import pyplot as plt

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import linear_kernel

Dataset : Movielens

https://grouplens.org/datasets/movielens/100k

# Reading ratings file
ratings = pd.read_csv('ratings.csv', sep=',

, encoding='latin-1', usecols=|

# Reading movies file
movies = pd.read_csv('movies.csv', sep=',

, encoding='latin-1"', usecols=["m

df_movies = movies
df_ratings = ratings

df_movies
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Recommendation_system_thesis

title

Toy Story (1995)

Jumaniji (1995)

Grumpier Old Men (1995)
Waiting to Exhale (1995)

Father of the Bride Part Il (1995)

Black Butler: Book of the
Atlantic (2017)

No Game No Life: Zero (2017)

9742 rows x 3 columns

df_rat

A W N

100831
100832
100833
100834

100835

ings

userld

610
610
610
610

610

Flint (2017)

Bungo Stray Dogs: Dead Apple
(2018)

Andrew Dice Clay: Dice Rules
(1991)

movield rating timestamp
1 4.0 964982703

3 40 964981247

6 4.0 964982224

47 5.0 964983815

50 5.0 964982931

166534 4.0 1493848402
168248 5.0 1493850091
168250 5.0 1494273047
168252 5.0 1493846352

170875 3.0 1493846415

100836 rows x 4 columns

Exploratory Data Analysis(EDA)

df_movies.head(5)
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genres

Adventure|Animation|Children|Comedy|Fantasy

Adventure|Children|Fantasy
Comedy|Romance
Comedy|DramalRomance

Comedy

Action|Animation|Comedy|Fantasy

Animation|Comedy|Fantasy

Drama

Action|Animation

Comedy

5/55



29/09/2024, 19:43 Recommendation_system_thesis

movield title genres
0 1 Toy Story (1995) Adventure|Animation|Children|Comedy|Fantasy
1 2 Jumaniji (1995) Adventure|Children|Fantasy
2 3 Grumpier Old Men (1995) Comedy|Romance
3 4 Waiting to Exhale (1995) Comedy|DramalRomance
4 5 Father of the Bride Part Il (1995) Comedy

Most popular genres of movie released

plt.figure(figsize=(20,7))
generlist = df_movies['genres'].apply(lambda generlist_movie : str(generlis-
geners_count = {}

for generlist_movie in generlist:
for gener in generlist_movie:
if(geners_count.get(gener,False)):
geners_count [gener]l=geners_count [gener]+1
else:
geners_count[gener] =1
geners_count.pop("(no genres listed)")
plt.bar(geners_count.keys(),geners_count.values(),color='m")

<BarContainer object of 19 artists>

4000

2000

1000

Adventure Animation Children Comedy Fantasy Romance Drama Action Crime Thriller Horror  Mystery Sci-Fi War Musical Documentary IMAX Western  Film-Noir

df_ratings.head(5)

userld movield rating timestamp

0 1 1 4.0 964982703
1 1 3 4.0 964981247
2 1 6 4.0 964982224
3 1 47 5.0 964983815
4 1 50 5.0 964982931

Distribution of users rating

sns.distplot(df_ratings["rating"]);
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/usr/local/lib/python3.9/site-packages/seaborn/distributions.py:2557: Futur
eWarning: “distplot”® is a deprecated function and will be removed in a futu
re version. Please adapt your code to use either “displot” (a figure-level
function with similar flexibility) or “histplot® (an axes-level function fo
r histograms).

warnings.warn(msg, FutureWarning)

30 4
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20 4

15 1

Density

10 1

05 1

00 T
0 1 2 3 4 5

rating

print("Shape of frames: \n"+ " Rating DataFrame"+ str(df_ratings.shape)+'"\n

Shape of frames:
Rating DataFrame(100836, 4)
Movies DataFrame(9742, 3)

merge_ratings_movies = pd.merge(df_movies, df_ratings, on='movieId', how="1il
merge_ratings_movies.head(2)

movield title genres userld rating timestamp

Toy
0 1 Story Adventure|Animation|Children|Comedy|Fantasy 1 4.0 964982703
(1995)

Toy
1 1 Story Adventure]Animation|Children|Comedy|Fantasy 5 4.0 847434962
(1995)

merge_ratings_movies = merge_ratings_movies.drop('timestamp', axis=1)

merge_ratings_movies.shape

(100836, 5)
Grouping the rating based on user

ratings_grouped_by_users = merge_ratings_movies.groupby('userId').agg([np.s

ratings_grouped_by_users.head(2)
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movield rating
size mean  size mean

userld
1 232 1854.603448 232.0 4.366379

2 29 70350.275862 29.0 3.948276
ratings_grouped_by_users = ratings_grouped_by users.drop('movield', axis = :

Top 10 users who have rated most of the movies

ratings_grouped_by_users['rating']['size'].sort_values(ascending=False) .heat

<AxesSubplot:xlabel="userId'>

2500 1
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userld

ratings_grouped_by_movies = merge_ratings_movies.groupby('movieId').agg([np

ratings_grouped_by_movies.shape

(9724, 2)

ratings_grouped_by_movies.head(3)

userld rating
mean mean
movield
1 306.530233 3.920930
2 329.554545 3.431818

3 283596154 3.259615
ratings_grouped_by_movies = ratings_grouped_by _movies.drop('userId', axis=1

Movies with high average rating
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ratings_grouped_by_movies['rating']['mean'].sort_values(ascending=False) .he:

3941

3940

3939

126921

loded4

movield

128087

33138

Se608

53355

Movies with low average rating
low_rated_movies_filter = ratings_grouped_by_movies|['rating']['mean']< 1.5
low_rated_movies = ratings_grouped_by_movies[low_rated_movies_filter]

low_rated_movies.head(20).plot(kind="'barh', figsize=(7,5));

1574
1526 Mone,None

1519 I (rating, mean)

1427
1426
1389
1336
1335
1328
1526
1525
1324
1163
&8ra
E98
476
470
449
i1z
178

o0 0z 04 06 0E 10 12 14

mavield

low_rated_movies.head(10)
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rating

mean

movield

178 1.000000

312 1.444444
449 1.000000
470 1.000000
476 1.000000
698 1.000000
870 1.000000
1163 1.000000
1324 1.166667

1325 1.250000

Content based filtering

e Content based system suggests you what you like based on what you liked in past.

e Recommendation of items are based on : user's previous purcheses, reviews and
likes

e Combine: Item description and User profile description

e Generate similarity score

e Recommend the items based on similarity score

Item profiles
likes ' '
= @ A

build

recommend

. . match Red

S —— Circles
. . Triangles

User profile

The concepts of Term Frequency (TF) and Inverse Document Frequency (IDF) are used
in information retrieval systems and also content based filtering mechanisms (such as a
content based recommender). They are used to determine the relative importance of a

document / article / news item [/ movie etc.
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Term Frequency (TF) and Inverse Document Frequency (IDF)

TF is simply the frequency of a word in a document. IDF is the inverse of the document
frequency among the whole corpus of documents. TF-IDF is used mainly because of two
reasons: Suppose we search for “the rise of analytics” on Google. It is certain that “the"
will occur more frequently than "analytics” but the relative importance of analytics is
higher than the search query point of view. In such cases, TF-IDF weighting negates the
effect of high frequency words in determining the importance of an item (document).

We will consider genres as an important parameter to recommend user the movie he
watches based on generes of movie user has already watched.

TFIDF score for term i in document j = TF(i,f)* IDF(i)

where

IDF = Inverse Document Frequency

TF = Term Frequency

Term i frequency in document j
TF(i,j) = e d ’

Total words in document |

Total documents )

IDP() ™ logs (ducuments with term i

and
t =Term
J = Document

For calculating distances, many similarity coefficients can be calculated. Most widely
used similarity coefficients are Euclidean, Cosine, Pearson Correlation etc.

Cosine similarity is a measure of similarity between two non-zero vectors of an inner
product space that measures the cosine of the angle between them. Given two vectors
of attributes, A and B, the cosine similarity, cos(0), is represented using a dot product
and magnitude as Inline-style: le.alt text

We will use cosine distance here. Here we are insterested in similarity. That means
higher the value more similar they are. But as the function gives us the distance, we will
deduct it from 1.

# Define a TF-IDF Vectorizer Object.
tfidf_movies_genres = TfidfVectorizer(token_pattern = '[a-zA-Z0-9\-]+")

#Replace NaN with an empty string
df_movies['genres'] = df_movies['genres'].replace(to_replace="(no genres Lli:

#Construct the required TF-IDF matrix by fitting and transforming the data
tfidf_movies_genres_matrix = tfidf_movies_genres.fit_transform(df_movies|['qg«
# print(tfidf_movies_genres.get_feature_names())

# Compute the cosine similarity matrix

file:///Users/kaushaldabhi/Documents/kaushal_thesis/Recommendation_system_thesis.html
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# print(tfidf_movies_genres_matrix.shape)

# print(tfidf_movies_genres_matrix.dtype)

cosine_sim_movies = linear_kernel(tfidf_movies_genres_matrix, tfidf_movies_
# print(cosine_sim_movies)

def get_recommendations_based_on_genres(movie_title, cosine_sim_movies=cosil

Calculates top 2 movies to recommend based on given movie titles genres
:param movie_title: title of movie to be taken for base of recommendatit
:param cosine_sim_movies: cosine similarity between movies

:return: Titles of movies recommended to user

# Get the index of the movie that matches the title
idx_movie = df_movies.loc[df_movies['title'].isin([movie_titlel)]
idx_movie idx_movie.index

# Get the pairwsie similarity scores of all movies with that movie
sim_scores_movies = list(enumerate(cosine_sim_movies[idx_movie] [0]))

# Sort the movies based on the similarity scores
sim_scores_movies = sorted(sim_scores_movies, key=lambda x: x[1], rever:

# Get the scores of the 10 most similar movies
sim_scores_movies = sim_scores_movies[1:11]

# Get the movie indices
movie_indices = [i[0] for i in sim_scores_movies]

# Return the top 10 most similar movies
return df_movies['title'].iloc[movie_indices]

get_recommendations_based_on_genres("Father of the Bride Part II (1995)")

17
18
58
61
79
90
92

104
108
113

Four Rooms (1995)

Ace Ventura: When Nature Calls (1995)
Bio-Dome (1996)

Friday (1995)

Black Sheep (1996)

Mr. Wrong (1996)

Happy Gilmore (1996)

Steal Big, Steal Little (1995)
Flirting With Disaster (1996)
Down Periscope (1996)

Name: title, dtype: object

def get_recommendation_content_model(userId):

Calculates top movies to be recommended to user based on movie user has
:param userId: userid of user
:return: Titles of movies recommended to user
recommended_movie_ list = []
movie_list = []
df_rating_filtered = df_ratings[df_ratings["userId"]== userld]
for key, row in df_rating_filtered.iterrows():
movie_list.append((df_movies["title"][row["movieId"]==df_movies["mo"
for index, movie in enumerate(movie_list):
for key, movie_recommended in get_recommendations_based_on_genres (m
recommended_movie_list.append(movie_recommended)

# removing already watched movie from recommended list
for movie_title in recommended_movie_Tlist:
if movie_title in movie_list:
recommended_movie_list.remove(movie_ title)

file:///Users/kaushaldabhi/Documents/kaushal_thesis/Recommendation_system_thesis.html
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return set(recommended_movie_list)
get_recommendation_content_model(1)
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{'«batteries not included (1987)°',
'101 Dalmatians (One Hundred and One Dalmatians) (1961)',
'10th Kingdom, The (2000)',
'13 Going on 30 (2004)"',
'39 Steps, The (1935)',
'48 Hrs. (1982)',
'5,000 Fingers of Dr. T, The (1953)°',
'52 Pick-Up (1986)"',
'7th Voyage of Sinbad, The (1958)°',
'8MM (1999)°',
'A Million Ways to Die in the West (2014)',
'A Wrinkle in Time (2018)°',
'Above the Rim (1994)',
'Absolute Power (1997)',
'Ace Ventura: When Nature Calls (1995)',
'Action Jackson (1988)',
'Adventures in Babysitting (1987)',
'Adventures of Baron Munchausen, The (1988)',
'Adventures of Buckaroo Banzai Across the 8th Dimension, The (1984)"',
'Adventures of Ichabod and Mr. Toad, The (1949)',
'Adventures of Pinocchio, The (1996)',
'Adventures of Rocky and Bullwinkle, The (2000)',
'Adventures of Sharkboy and Lavagirl 3-D, The (2005)',
'Agent Cody Banks (2003)',
"Air Force One (1997)°',
'Aladdin (1992)',
'Alamo, The (1960)"',
'Alaska (1996)',
'Alice (1990)',
"Alice in Wonderland (1951)°',
'Alien Nation (1988)',
'All Dogs Christmas Carol, An (1998)',
'A11 Dogs Go to Heaven 2 (1996)',
'Al1l That Jazz (1979)',
'Allan Quatermain and the Lost City of Gold (1987)',
'Allegro non troppo (1977)',
"Almost Heroes (1998)',
'"Alvin and the Chipmunks: The Squeakquel (2009)"',
'Always (1989)',
'Amateur (1994)°',
'Amazing Panda Adventure, The (1995)',
'American Astronaut, The (2001)"',
'American Pop (1981)',
'Americanization of Emily, The (1964)"',
'Amistad (1997)',
"Amityville 1992: It's About Time (1992)",
"Amityville 3-D (1983)',
"Amityville: A New Generation (1993)',
"Amityville: Dollhouse (1996)"',
'Anaconda (1997)',
'Anastasia (1997)°',
'"Anchors Aweigh (1945)',
'And Now... Ladies and Gentlemen... (2002)',
'And the Ship Sails On (E la nave va) (1983)',
'"Angel Eyes (2001)°',
'Angels and Insects (1995)',
'Annie (1982)',
"Antonia's Line (Antonia) (1995)",
'Antz (1998)',
'Aristocats, The (1970)',
"Arizona Dream (1993)°',
"Armour of God (Long xiong hu di) (1987)',
'Armour of God II: Operation Condor (Operation Condor) (Fei ying gai wak)
(1991) ",
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'"Army of Darkness (1993)',

'"Around the World in 80 Days (1956)°',

'"Arrival, The (1996)',

'Assassins (1995)',

'Asterix & Obelix: Mission Cleopatra (AstAorix & ObAolix: Mission ClA©opAd
tre) (2002)°',

'Asterix and the Vikings (AstAorix et les Vikings) (2006)',

'Atlantis: The Lost Empire (2001)°',

'Attack the Block (2011)',

'Austin Powers: The Spy Who Shagged Me (1999)',

'Avengers, The (1998)',

'"Awfully Big Adventure, An (1995)',

'B/W (2015) ",

'BURN-E (2008)',

'Babes in Toyland (1934)',

'Babes in Toyland (1961)"',

'Back to the Future Part II (1989)°',

'Backbeat (1993)',

'Bad Taste (1987)°',

'Balto (1995)',

'Bananas (1971)',

'Band Wagon, The (1953)',

'Band of Outsiders (Bande A\xa@ part) (1964)',

'Bandits (2001)',

'Barb Wire (1996)"',

'Barry Lyndon (1975)°',

'Basic Instinct (1992)°',

'Basketball Diaries, The (1995)',

'Batman/Superman Movie, The (1998)',

'Batman: Gotham Knight (2008)',

'Batman: Mask of the Phantasm (1993)',

'Batman: Mystery of the Batwoman (2003)',

'Batman: Year One (2011)°',

'Battle for the Planet of the Apes (1973)°',

'Beach Blanket Bingo (1965)',

'Beat the Devil (1953)°',

'Beautiful Creatures (2000)"',

'Beauty and the Beast: The Enchanted Christmas (1997)',

'Bed of Roses (1996)',

'Before the Rain (Pred dozhdot) (1994)"',

'Bell, Book and Candle (1958)',

'Ben-Hur (1959)°',

'Beneath the Planet of the Apes (1970)',

'Beverly Hills Cop (1984)',

'Beverly Hills Cop II (1987)°',

'Big Bounce, The (2004)',

'Big Bully (1996)",

'Big Country, The (1958)"',

'Big Fish (2003)',

'Big Sleep, The (1946)',

"Bill & Ted's Excellent Adventure (1989)",

'Bio-Dome (1996)',

'Black Christmas (1974)',

'Black Christmas (2006)',

'Black Hole, The (1979)‘',

'Black Knight (2001)"',

'Black Sea (2015)',

'Black Sheep (1996)',

'Blackhat (2015)',

'Blade (1998)',

'Blade II (2002)',

'Blade Runner (1982)',

'Blade: Trinity (2004)',

'Blazing Saddles (1974)',
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'Blind Swordsman: Zatoichi, The (zZatA’ichi) (2003)',
'Blink (1994)',

'Blob, The (1958)°',

'Blood and Wine (Blood & Wine) (1996)',

'Blue Velvet (1986)°',

'Blue in the Face (1995)',

'Blueberry (2004)',

'Blues Brothers 2000 (1998)"',

'Boomerang (1992)°',

'Boot, Das (Boat, The) (1981)',

'Borrowers, The (1997)',

'Bourne Identity, The (1988)°',

'Boys from Brazil, The (1978)"',

'Boys of St. Vincent, The (1992)°',

'Boys on the Side (1995)°',

'Brave Little Toaster, The (1987)°',
'Breakdown (1997)°',

'Breaking the Waves (1996)"',

'Bride of Frankenstein, The (Bride of Frankenstein) (1935)"',
'Bridges of Madison County, The (1995)°',
'Bright (2017)',

'Broken Arrow (1996)',

'Brother Bear (2003)',

'Brotherhood of the Wolf (Pacte des loups, Le) (2001)',
'Brothers Bloom, The (2008)"',

'Bruce Almighty (2003)"',

"Bug's Life, A (1998)",

'Butch Cassidy and the Sundance Kid (1969)',
"Can't Stop the Music (1980)",

'Candyman: Farewell to the Flesh (1995)°',
'Cape Fear (1962)',

'Captain Blood (1935)',

'Captain Underpants: The First Epic Movie (2017)°',
'Carabineers, The (Carabiniers, Les) (1963)',
'Care Bears Movie, The (1985)',

"Carpool (1996)"',

'Casanova (2005)"',

'Casino Royale (1967)',

'Casper (1995)',

'Castle Freak (1995)',

'Cat Ballou (1965)"',

'Cat Returns, The (Neko no ongaeshi) (2002)"',
'Cat from Outer Space, The (1978)',

'Catch-22 (1970)',

"Cats Don't Dance (1997)",

'Catwoman (2004)',

'Cellular (2004)',

'Cemetery Man (Dellamorte Dellamore) (1994)',
'Chain Reaction (1996)',

'Changeling, The (1980)"',

'Chicken Little (2005)',

'Children of the Corn IV: The Gathering (1996)"',
'Chinatown (1974)',

'Chitty Chitty Bang Bang (1968)"',

'Chronicles of Narnia: The Lion, the Witch and the Wardrobe, The (2005)',

'Cinderella (1950)"',

'Cinderella (1997)',

"Cirque du Freak: The Vampire's Assistant (2009)",
'City Slickers (1991)',

"City Slickers II: The Legend of Curly's Gold (1994)",
'City of Angels (1998)°',

'City of Ember (2008)',

'Claim, The (2000)"',

'Clash of the Titans (1981)',

file:///Users/kaushaldabhi/Documents/kaushal_thesis/Recommendation_system_thesis.html

16/55



29/09/2024, 19:43 Recommendation_system_thesis

'Claymation Christmas Celebration, A (1987)',
"Click (2006)"',

'Cliffhanger (1993)',

'Cloak & Dagger (1984)',

"Clueless (1995)',

'Cocoon (1985)"',

'Cocoon: The Return (1988)',

'Colonel Chabert, Le (1994)',

'Company of Wolves, The (1984)',

'Conan the Barbarian (1982)°',

'Coneheads (1993)°',

'Confessions of a Dangerous Mind (2002)',
'Conquest of the Planet of the Apes (1972)',
'Constantine (2005)',

'Cop Land (1997)',

'Corruptor, The (1999)',

'Covenant, The (2006)",

'Crimson Pirate, The (1952)°',

'Crocodile Dundee II (1988)°',

'"Crow, The (1994)"',

'Crow: City of Angels, The (1996)"',

'Cry, the Beloved Country (1995)"',
'Cuckoo, The (Kukushka) (2002)"',

'Cure (1997)',

'Curious George (2006)"',

'Cutthroat Island (1995)',

'D.A.R.Y.L. (1985)",

'Da Sweet Blood of Jesus (2014)°',
'Dangerous Minds (1995)"',

"Dante's Peak (1997)",

"Darby 0'Gill and the Little People (1959)",
'Dark Crystal, The (1982)"',

'Dark Portals: The Chronicles of Vidocq (Vidocq) (2001)',
'Date with an Angel (1987)°',

'Davy Crockett, King of the Wild Frontier (1955)°',
'Day Watch (Dnevnoy dozor) (2006)',

'Day the Earth Stood Still, The (1951)',
'Dead End (2003)',

'Dead Man Walking (1995)',

"Dead Men Don't Wear Plaid (1982)",

'Dead or Alive: Final (2002)',

'Death Becomes Her (1992)°',

'Deep Impact (1998)°',

'Defending Your Life (1991)',

'Demolition Man (1993)',

'Desperate Measures (1998)°',

'Despicable Me (2010)',

'Destry Rides Again (1939)°',

'Devil and Max Devlin, The (1981)‘',

'Dial M for Murder (1954)°',

'Die Hard (1988)',

'Die Hard 2 (1990)"',

'Die Hard: With a Vengeance (1995)',
'Digimon: The Movie (2000)',

'Dinosaur (2000)',

'Dinotopia (2002)',

'Dirty Dozen, The (1967)"',

'Discreet Charm of the Bourgeoisie, The (Charme discret de la bourgeoisie,
Le) (1972)',

'District 13 (Banlieue 13) (2004)°',
'Django Unchained (2012)°',

'Doctor Dolittle (1967)°',

'Doctor Who: Planet of the Dead (2009)',
'Doctor Who: The Next Doctor (2008)',
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'Doctor Who: The Waters of Mars (2009)',
'Doctor Zhivago (1965)°',
'Dogma (1999) ',
'Dorian Gray (2009)',
'Double Jeopardy (1999)°',

'Double Life of Veronique, The (Double Vie de VAoronique, La) (1991)°',

'Double, The (2011)',

"Doug's 1st Movie (1999)",

'Down Periscope (1996)',

'Down to Earth (2001)',

"Dr. Horrible's Sing-Along Blog (2008)",

'Dr. Strangelove or: How I Learned to Stop Worrying and Love the Bomb (196

4)"',
'Dragonheart (1996)',
'Drop Dead Fred (1991)',
'Drop Zone (1994)',
'Duck, You Sucker (1971)',
'Dungeons & Dragons (2000) "',
'Earth Girls Are Easy (1988)',
'Edge, The (1997)',
'Eight Below (2006)',
"Eight Crazy Nights (Adam Sandler's Eight Crazy Nights) (2002)",
'Ella Enchanted (2004)°',
'"Emerald Forest, The (1985)"',
"Emerald Green (2016)"',
"Emperor's New Groove, The (2000)",
'English Patient, The (1996)',
'Enigma (2001)',
'"Erik the Viking (1989)',
'Escape From Tomorrow (2013)',
'"Escape from L.A. (1996)',
'Escape from New York (1981)',
'Escape from the Planet of the Apes (1971)',
'"Evita (1996)',

'Ewok Adventure, The (a.k.a. Caravan of Courage: An Ewok Adventure) (198

4)",
'Ewoks: The Battle for Endor (1985)',
'Executive Decision (1996)',
'"Explorers (1985)"',
'Extraordinary Adventures of AdA”le Blanc-Sec, The (2010)',
'Eyes Wide Shut (1999)°',
'Eyes Without a Face (Yeux sans visage, Les) (1959)',
'Eyes of Laura Mars (1978)°',
'Faculty, The (1998)",
'Fantastic Mr. Fox (2009)"',
'Far From Home: The Adventures of Yellow Dog (1995)',
'Fatal Beauty (1987)',
'Faust (1926)°',
'Fear (1996)',
'FearDotCom (a.k.a. Fear.com) (a.k.a. Fear Dot Com) (2002)"',
'Feast (2005)',
'"Ferngully: The Last Rainforest (1992)',
'Finding Nemo (2003)',
'Fire and Ice (2008)',
'Fish Called Wanda, A (1988)',
'Fisher King, The (1991)',
'"Fistful of Dollars, A (Per un pugno di dollari) (1964)"',
'Fitzcarraldo (1982)',
'Fled (1996)',
'Flight of the Phoenix, The (1965)',
'"Flipper (1996)',
'"Flirting With Disaster (1996)',
'Fly Away Home (1996)',
'"Flying Tigers (1942)',
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'Fog, The (1980)',
'Following (1998)",
"Fool's Gold (2008)",
'For a Few Dollars More (Per qualche dollaro in piA!) (1965)°',
'Forbidden Kingdom, The (2008)',
'"Force 10 from Navarone (1978)°',
'Forget Paris (1995)',
'Formula 51 (2001)"',
'Four Musketeers, The (1974)',
'Four Rooms (1995)',
'Frankenstein Must Be Destroyed (1969)',
'Frankenstein Unbound (1990)',
'Frantic (1988)"',
'Freaks (1932)',
'Freddy vs. Jason (2003)',
'Freeway (1996)',
'French Twist (Gazon maudit) (1995)°',
'Fresh (1994)"',
'Friday (1995)',
'Friday the 13th (1980)°',
'Friend Is a Treasure, A (Chi Trova Un Amico, Trova un Tesoro) (Who Finds
a Friend Finds a Treasure) (1981)°',
'"Frisco Kid, The (1979)‘',
'"From Dusk Till Dawn 2: Texas Blood Money (1999) ‘',
'"From Here to Eternity (1953)°',
'Frosty the Snowman (1969)°',
'Funny Face (1957)',
'G-Force (2009)"',
'G.I. Joe: The Movie (1987)"',
'Galaxy Quest (1999)°',
'Gamers, The: Dorkness Rising (2008)',
'Gattaca (1997)',
"General's Daughter, The (1999)",
'General, The (1926)',
'Georgia (1995)°',
'Get Shorty (1995)°,
'Ghost in the Shell (2017)°',
'Ghostbusters (a.k.a. Ghost Busters) (1984)"',
'Gigli (2003)°,
'Ginger Snaps Back: The Beginning (2004)',
'Girl Walks Into a Bar (2011)',
'Girl Who Played with Fire, The (Flickan som lekte med elden) (2009)',
'Glimmer Man, The (1996)',
'Godfather: Part III, The (1990)°',
'Gods Must Be Crazy, The (1980)',
'Godzilla (1998)',
'Godzilla (Gojira) (1954)',
'Gone in 60 Seconds (2000)',
'Gone with the Wind (1939)°',
'Goodbye Lover (1999)',
'Grand Day Out with Wallace and Gromit, A (1989)',
'Great Dictator, The (1940)°',
'Great Race, The (1965)',
'Great Yokai War, The (YA'kai daisensA’) (2005)',
'Great Ziegfeld, The (1936)"',
'Guilty of Romance (Koi no tsumi) (2011) ',
'Hancock (2008)',
'Hanna (2011)',
'Happiness of the Katakuris, The (Katakuri-ke no kA’fuku) (2001)',
'"Happy Gilmore (1996)',
'Hard Rain (1998)°',
'"Harlem Nights (1989)',
'Harry Potter and the Chamber of Secrets (2002)',
"Harry Potter and the Sorcerer's Stone (a.k.a. Harry Potter and the Philos
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opher's Stone) (2001)",
'Harvey (1950)',
'Hate (Haine, La) (1995)',

'He Loves Me...

'Heart and Souls (1993)',
'Heartbreakers (2001)"',
'Heavenly Creatures (1994)"',
'Helen of Troy (2003)',

'Hell Comes to Frogtown (1988)',
'Hellboy (2004)',

'Help!
'Henry: Portrait of a Serial Killer (1986)"',
'Hercules (1997)',

'Hey Arnold! The Movie (2002)',
'Hideaway (1995)',

'High Heels and Low Lifes (2001)"',
'High Rise (2015)',

'History of Future Folk, The (2012)°',

(1965) ',

He Loves Me Not (A\x80 la folie...

'History of the World: Part I (1981)°',
'Hit by Lightning (2014)"',

'"Hitch Hikers Guide to the Galaxy, The (1981)',

'Hitcher, The (2007)',

'Holiday Inn (1942)',

'"Home (2015)',

'Home for the Holidays (1995)°',

'Homeward Bound II: Lost in San Francisco (1996)',

'Honey, I Blew Up the Kid (1992)',
'"Hook (1991)',

'Horse Soldiers, The (1959)°',
'Host, The (2013)°',

'Hostel: Part II (2007)',

'Hot Shots! (1991)',

'House of Games (1987)°',

'How the Grinch Stole Christmas!

(1966) ',

'How to Make an American Quilt (1995)°',
'How to Steal a Million (1966)', ) )
'T Served the King of England (Obsluhoval jsem anglickAoho krAile) (200

6)',

'Ice Age (2002)',
'Ice Age: A Mammoth Christmas (2011)',
'If Lucy Fell (1996)',
'Imagine That (2009)',
'Impostor (2002)',
Bruges (2008)',
Like Flint (1967)',
Time (2011)°',

'In
'In
'In
'In
'In
'In
'In
'In

the
the
the
the
the

'Indian
"Informant!, The (2009)',
'Inkheart (2008)',
'"Insomnia (1997)',
'"Insomnia (2002)',

'Into the Woods (1991)°',
'Into the Woods (2014)°',
'Iron Sky (2012)°',

'JFK (1991)°',
'Jabberwocky (1977)',

'Jack Reacher: Never Go Back (2016)',

Army Now (1994)',

Bleak Midwinter (1995)°',
Heat of the Night (1967)',
Line of Fire (1993)',

blue sea, in the white foam.

in the Cupboard, The (1995)',

"Jane Austen's Mafia! (1998)",
"Jason's Lyric (1994)",
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'Jean de Florette (1986)',

'Jeffrey (1995)°',

'Jennifer 8 (1992)',

'Jesus Christ Vampire Hunter (2001)°',

'Jewel of the Nile, The (1985)"',

'Jimmy Neutron: Boy Genius (2001)',

"Joe's Apartment (1996)",

'Johnny Mnemonic (1995)',

'Jonah: A VeggieTales Movie (2002)',

'Journey to the Center of the Earth (1959)',

'Judge Dredd (1995)',

'Judgment Night (1993)',

'Juliet of the Spirits (Giulietta degli spiriti) (1965)°',
'Jungle Book, The (1967)"',

'Just Cause (1995)°',

'Karate Kid, Part II, The (1986)"',

'Kaspar Hauser (1993)',

'Kid, The (2000)',

'Killer Movie (2008)',

'Killer, The (Die xue shuang xiong) (1989)°',
'Killing Zoe (1994)',

'King Kong vs. Godzilla (Kingukongu tai Gojira) (1962)°',
"King Solomon's Mines (1937)",

"King Solomon's Mines (1950)",

'King and I, The (1999)',

'King of Hearts (1966)"',

'Kingdom of Heaven (2005)',

'Kirikou and the Sorceress (Kirikou et la sorciA”re) (1998)°',
'Kiss of Death (1995)',

'Kite (2014)',

'Klute (1971)',

"Knockin' on Heaven's Door (1997)",

'Kull the Conqueror (1997)',

'Kung Fu Panda: Secrets of the Furious Five (2008)',
'L.A. Slasher (2015)°',

'La CAorAemonie (1995)°',

'Lady Vanishes, The (1938)°',

'Lady in White (a.k.a. The Mystery of the Lady in White) (1988)°',

'Land Before Time III: The Time of the Great Giving (1995)',
'Land Before Time, The (1988)',

'Land and Freedom (Tierra y libertad) (1995)',

'Land of the Dead (2005)',

'Laputa: Castle in the Sky (TenkA» no shiro Rapyuta) (1986)°',
'Lara Croft Tomb Raider: The Cradle of Life (2003)',

'Lassie (1994)',

'Last Action Hero (1993)',

'Last House on the Left, The (1972)°',

'Last Man Standing (1996)',

"Last Man on Earth, The (Ultimo uomo della Terra, L') (1964)",
'Last Mimzy, The (2007)°',

'Last Unicorn, The (1982)°',

'Last of the Dogmen (1995)°',

'Laura (1944)',

'Leaves of Grass (2009)',

'Leaving Las Vegas (1995)',

'Legal Eagles (1986)"',

'Legend of Sleepy Hollow, The (1949)',

'Legends of the Fall (1994)',

"Lemony Snicket's A Series of Unfortunate Events (2004)",
"Let's Get Harry (1986)",

'Lethal Weapon (1987)',

'Lethal Weapon 2 (1989)°',

'Lethal Weapon 3 (1992)',

'Lethal Weapon 4 (1998)°',
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'Librarian: Quest for the Spear, The (2004)"',
'Life Aquatic with Steve Zissou, The (2004)',
'Life Eternal (2015)',

'Life Is Beautiful (La Vita A" bella) (1997)°',
'Life Less Ordinary, A (1997)',

'Lifeforce (1985)"',

'Lilo & Stitch (2002)',

'Lion King 1A%, The (2004)',

"Lion King II: Simba's Pride, The (1998)",
'Little Drummer Boy, The (1968)',

'Little Shop of Horrors (1986)"',

'Lonesome Dove (1989)',

'Looper (2012)°',

'Lord of the Rings: The Fellowship of the Ring, The (2001)',

'Lord of the Rings: The Two Towers, The (2002)',
'Losers, The (2010)',

'Lost World: Jurassic Park, The (1997)',

'Lost in Space (1998)',

'Love & Human Remains (1993)‘',

"Luna Papa (1999)',

'LAeon: The Professional (a.k.a. The Professional) (LA®on)
'"M*%AxS*H (a.k.a. MASH) (1970)',

'Machine Girl, The (Kataude mashin gAd¢ru) (2008)',
'Mad Love (1995)',

'"Madagascar (2005)"',

'Magnificent Seven, The (1960)",

'Major Dundee (1965)"',

'Malice (1993)',

'Mallrats (1995)',

"Man Bites Dog (C'est arrivAo prA”s de chez vous) (1992)",
'Man Who Knew Too Little, The (1997)',

'Man Who Would Be King, The (1975)',

'Man in the Iron Mask, The (1998)',

'Man on Fire (2004)',

'Many Adventures of Winnie the Pooh, The (1977)',
'Mars Attacks! (1996)',

'Maverick (1994)',

'Maximum Risk (1996)',

'Me, Myself & Irene (2000)',

'Medallion, The (2003)"',

'Meet the Feebles (1989)',

'Meet the Robinsons (2007)',

'Men in Black II (a.k.a. MIIB) (a.k.a. MIB 2) (2002)',
'Merlin (1998)',

'Midnight Run (1988)"',

"Midsummer Night's Dream, A (1935)",

'Milagro Beanfield War (1988)°',

'Miss Congeniality 2: Armed and Fabulous (2005)',
'Mister Roberts (1955)',

'MisAerables, Les (1995)',

'Mod Squad, The (1999)',

'Monday (2000)',

'Monster House (2006)',

'Monsters, Inc. (2001)',

'"Moonraker (1979)',

'"Mortal Kombat (1995)°',

'Mortal Kombat: Annihilation (1997)°',

'Mortal Thoughts (1991)"',

'Mouse That Roared, The (1959)',

'Mr. & Mrs. Smith (2005)',

"Mr. Holland's Opus (1995)",

'Mr. Wrong (1996)',

'Mulholland Drive (2001)',

'Mulholland Falls (1996)"',
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'Muppet Movie, The (1979)°',

'"Muppet Treasure Island (1996)",

'"Muppets Most Wanted (2014)"',

'Murder at 1600 (1997)',

'Murder on the Orient Express (1974)',
'Musketeer, The (2001)"',

'Mutiny on the Bounty (1935)',

'My Favorite Martian (1999)°',

'My Neighbor Totoro (Tonari no Totoro) (1988)',
'Mystery Men (1999)',

'Mystery Science Theater 3000: The Movie (1996)',
'Name of the Rose, The (Name der Rose, Der) (1986)"',
'Nashville (1975)°',

'National Treasure (2004)"',

'Natural Born Killers (1994)',

'Net, The (1995)',

'NeverEnding Story II: The Next Chapter, The (1990)',
'NeverEnding Story III, The (1994)',
'NeverEnding Story, The (1984)",

'New Adventures of Pippi Longstocking, The (1988)',
'New Jersey Drive (1995)°',

'Newsies (1992)',

'Night of the Comet (1984)°',

'Nightbreed (1990)"',

'Nightmare Before Christmas, The (1993)',
"Nim's Island (2008)",

'Nine Lives of Tomas Katz, The (2000)',

'Nine Months (1995)',

'No Such Thing (2001)',

'Nobody Loves Me (Keiner liebt mich) (1994)°',
'North Pole: Open For Christmas (2015)"',

'North by Northwest (1959)°',

'Nothing But Trouble (1991)',

'Nothing Personal (1995)°',

'Nutty Professor, The (1963)',

'0 Brother, Where Art Thou? (2000)"',

'0dd Life of Timothy Green, The (2012)',

'0ld Man and the Sea, The (1958)"',

'Oliver & Company (1988)',

'Oliver! (1968)',

'Omega Man, The (1971)',

'Omen, The (1976)",

"On Her Majesty's Secret Service (1969)",

"Once Upon a Time in the West (C'era una volta il West) (1968)",

'Once Upon a Time... When We Were Colored (1995)',
'Once Were Warriors (1994)',

'Once a Thief (Zong heng si hai) (1991)°',

'One Man Band (2005)',

'One Tough Cop (1998)',

"Operation 'Y' & Other Shurik's Adventures (1965)",
'Operation Petticoat (1959)',

'Orlando (1992)',

'Othello (1995)',

'Our Man Flint (1965)',

'Outbreak (1995)',

'P.S. (2004)',

'Pacific Heights (1990)"',

'Parasite (1982)',

'"Partly Cloudy (2009)',

'Party Monster (2003)',

'Paths of Glory (1957)',

'Patriot Games (1992)',

'Pearl Harbor (2001)',

"Pee-wee's Big Adventure (1985)",
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'Penn & Teller Get Killed (1989)°',

'"Percy Jackson & the Olympians: The Lightning Thief (2010)',
'Perfect Crime, The (Crimen Ferpecto) (Ferpect Crime) (2004)',
'Perfect World, A (1993)',

'Persuasion (1995)',

'Peter Pan (1953)°',

'Peter Pan (1960)',

'Peter Pan (2003)',

'Phantom Tollbooth, The (1970)',

'Phantom, The (1996)"',

'Phineas and Ferb the Movie: Across the 2nd Dimension (2011)°',
'Picnic at Hanging Rock (1975)',

'Picture of Dorian Gray, The (1945)',

'Pie in the Sky (1996)',

'Pink Panther, The (2006)"',

"Pirates of the Caribbean: At World's End (2007)",
'Pirates of the Caribbean: The Curse of the Black Pearl (2003)',
'Pixel Perfect (2004)',

'Plan 9 from Outer Space (1959)°',

'Planet 51 (2009)"',

'Playing God (1997)',

'Pleasantville (1998)',

'Pledge, The (2001)',

'"Plunkett & MaCleane (1999)°',

'Pocahontas II: Journey to a New World (1998) ',
'Pokemon 4 Ever (a.k.a. PokAemon 4: The Movie) (2002)',
'PokAemon the Movie 2000 (2000)',

'PokAomon: The First Movie (1998)',

'Ponyo (Gake no ue no Ponyo) (2008)',

'Poseidon Adventure, The (1972)',

'Powerpuff Girls, The (2002)',

'Presto (2008)',

'"Price of Milk, The (2000)°',

'"Prince of Egypt, The (1998)',

'Princess and the Frog, The (2009)',

'Psycho II (1983)',

'Puppet Masters, The (1994)"',

'"Pure Formality, A (Pura formalitA\xa@, Una) (1994)',
'"Purple Rose of Cairo, The (1985)',

"Pusher III: I'm the Angel of Death (2005)",

'Queen of the Damned (2002)',

'Quest for Camelot (1998)',

'Quest for Fire (Guerre du feu, La) (1981)°',

'Quigley Down Under (1990)°',

'R.I.P.D. (2013)',

'Race to Witch Mountain (2009)',

'Raiders of the Lost Ark (Indiana Jones and the Raiders of the Lost Ark)
(1981) "',

'Rapture, The (1991)',

'Ratatouille (2007)',

'Ratchet & Clank (2016)',

'Re-Animator (1985)°',

'Rear Window (1954)',

'Red Balloon, The (Ballon rouge, Le) (1956)"',

'Red Dragon (2002)"',

'Red Rock West (1992)°',

'Red Sonja (1985)"',

'Red Violin, The (Violon rouge, Le) (1998)',
'Replacement Killers, The (1998)"',

'Repo Man (1984)',

'Rescuers Down Under, The (1990)°',

'Restoration (1995)°',

'Return from Witch Mountain (1978)°',

'Return of Jafar, The (1994)',
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'Return of the Musketeers, The (1989)"',
'Return of the Pink Panther, The (1975)°',
'Return to Never Land (2002)°',

'Return to Snowy River (a.k.a. The Man From Snowy River II) (1988)',
'Ride the High Country (1962)',

'Ring, The (2002)',

'Rio Grande (1950)',

'River Wild, The (1994)"',

'Road to E1l Dorado, The (2000)',

'Robin Hood: Prince of Thieves (1991)°',
'RoboCop 2 (1990)"',

'RoboCop 3 (1993)"',

'RoboGeisha (Robo-geisha) (2009)',
'Rock-A-Doodle (1991)',

'Rollerball (1975)"',

'Rollo and the Woods Sprite (RA1li ja metsA=nhenki) (2001)°',
'Ruby Red (2013)°',

'Rudolph, the Red-Nosed Reindeer (1964)',
'Rules of Attraction, The (2002)°',

'Run Lola Run (Lola rennt) (1998)°',

'Rundown, The (2003)',

'Russians Are Coming, the Russians Are Coming, The (1966)',
'Saboteur (1942)',

'Sabrina (1995)',

'Safe (1995)',

'Sands of Iwo Jima (1949)',

'Sanjuro (Tsubaki SanjA»rA”) (1962)',

'Santa Claus: The Movie (1985)',

'Sapphire Blue (2014)',

'Saving Private Ryan (1998)',

'Saw (2003)',

'Saw III (2006)',

'Saw IV (2007)',

'Scalphunters, The (1968)"',

'Scooby-Doo (2002)"',

'Scream 2 (1997)',

'Scream 4 (2011)',

'Screamers (1995)"',

'Scrooge (1970)',

'Scrooged (1988)"',

'Secret Life of Walter Mitty, The (1947)',
'Secret World of Arrietty, The (Kari-gurashi no Arietti) (2010)',
'Selena (1997)',

'Serial Mom (1994)"',

'Set It Off (1996)',

'Seven Samurai (Shichinin no samurai) (1954)"',
'Shadow Conspiracy (1997)',

'Shadow, The (1994)',

'Shallow Hal (2001)',

'Shanghai Knights (2003)"',

'Shanghai Surprise (1986)"',

'Shanghai Triad (Yao a yao yao dao waipo giao) (1995)',
'Shawshank Redemption, The (1994)',
'Shenandoah (1965)"',

'Sherlock Holmes and the Secret Weapon (1942)',
'Sherlock Holmes: Terror by Night (1946)',
'Sherlock Jr. (1924)',

'Sherlock: The Abominable Bride (2016)',
'Shrek 2 (2004)"',

'Shrek the Third (2007)',

'Silverado (1985)"',

'Simple Wish, A (1997)',

'Sin City (2005)',

'Sinbad and the Eye of the Tiger (1977)°',
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'Sinbad: Legend of the Seven Seas (2003)',

'Six-String Samurai (1998)°',

'Sleeper (1973)°',

'Sleepers (1996)',

'Sliver (1993)',

'Smoke (1995)°',

'Snake Eyes (1998)°',

'Snakes on a Plane (20006)',

'Snatch (2000)"',

'Snow White and the Seven Dwarfs (1937)',

'Snowman, The (1982)',

'Snowpiercer (2013)',

'Solo (1996)',

'Solo: A Star Wars Story (2018)°',

'Some Like It Hot (1959)',

'Something Wicked This Way Comes (1983)°',

'Son of the Mask (2005)',

'Sonatine (Sonachine) (1993)',

'Song of the Sea (2014)',

'Song of the South (1946)',

"Sorcerer's Apprentice, The (2010)",

'Sorrow (2015)',

'South Pacific (1958)°',

'Space Buddies (2009)',

'Spaced Invaders (1990)°',

'Spanish Prisoner, The (1997)',

'Spartacus (1960) ',

'Spawn (1997)',

'Species (1995)',

'Species II (1998)',

'Splash (1984)',

'SpongeBob SquarePants Movie, The (2004)',

'Stagecoach (1939)',

'Stalingrad (1993)',

'Stand by Me (1986)"',

'Star Trek II: The Wrath of Khan (1982)°',

'Star Trek III: The Search for Spock (1984)",

'Star Trek IV: The Voyage Home (1986)',

'Star Trek V: The Final Frontier (1989)',

'Star Trek: First Contact (1996)°',

'Star Trek: Nemesis (2002)',

'Star Wars: Episode IV — A New Hope (1977)',

'Star Wars: Episode VI - Return of the Jedi (1983)',

'Stardust (2007)',

'Stargate (1994)',

'Steal Big, Steal Little (1995)',

'Steamboat Willie (1928)°',

'Stendhal Syndrome, The (Sindrome di Stendhal, La) (1996)°',

'Sting, The (1973)°,

'Stir of Echoes (1999)',

'Straight Story, The (1999)',

'Strange Magic (2015)',

'Street Fighter (1994)°',

'Striking Distance (1993)',

'Stripes (1981)°',

'Striptease (1996)"',

'Stunt Man, The (1980)°',

'Suicide Squad (2016)',

'Sukiyaki Western Django (2008)',

'Super Mario Bros. (1993)',

'Supercop (Police Story 3: Supercop) (Jing cha gu shi III: Chao ji jing ch
a) (1992)',

'Supercop 2 (Project S) (Chao ji ji hua) (1993)°',

'Superhero Movie (2008)"',
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'Surviving the Game (1994)',

'Swan Princess, The (1994)',
'Switchback (1997)',

'Sword in the Stone, The (1963)',
'Take the Money and Run (1969)',
'Taking of Pelham One Two Three, The (1974)',
'Tale of Despereaux, The (2008)',
'Talk of the Town, The (1942)',
'Tangled Ever After (2012)',

'Tango & Cash (1989)°',

'Tango (1998)',

'Tarzan (1999)',

'Tarzan and the Lost City (1998)°',
'Tea with Mussolini (1999)°',
'Terminal Velocity (1994)',
'Terminator 2: Judgment Day (1991)',
'Texas Rangers (2001)',

'The Alamo (2004)',

'The BFG (2016)"',

'The Cobbler (2015)°',

"The Devil's Advocate (1997)",

'The Magnificent Seven (2016)',

'The Mummy (2017)',

'The Professional: Golgo 13 (1983)"',
'The Spiral Staircase (1945)',

'The Star Wars Holiday Special (1978)°',
'The Voices (2014)',

'They Call Me Trinity (1971)°',
'Thief of Bagdad, The (1940)',

'Thin Man, The (1934)',

'Third Man, The (1949)',

'Thirty-Two Short Films About Glenn Gould (1993)°',

'Three Caballeros, The (1945)',
'Three Musketeers, The (1948)',
'Thumbelina (1994)"',

'Tiger and the Snow, The (La tigre e la neve) (2005)',

'Tigger Movie, The (2000)',
'Time Lapse (2014)',
'Timecop (1994)°',

'Tin Drum, The (Blechtrommel, Die) (1979)',
'Titan A.E. (2000)"',

'To Be or Not to Be (1942)',
'Tokyo Tribe (2014)',

'Tom and Huck (1995)',

'Too Late for Tears (1949)°',
'Tora! Tora! Tora! (1970)°',
'Touch (1997)',

'Toy Story 2 (1999)',

'Toys (1992)',

'Train of Life (Train de vie) (1998)',
'"Troll 2 (1990)"',

'Tron (1982)',

'"True Crime (1996)"',

'True Grit (1969)°',

'True Lies (1994)',

'Turbo (2013)"',

'Turbulence (1997)',

'Twilight Saga: Breaking Dawn — Part 1, The (2011)°',

'Twin Peaks: Fire Walk with Me (1992)',
'Two Mules for Sister Sara (1970)°',
'"Two if by Sea (1996)',

'U.S. Marshals (1998)',

'Underneath (1995)°',

'Underworld (2003)"',
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'Underworld: Evolution (2006)',

'Unstrung Heroes (1995)"',

'Up (2009) ",

'Up Close and Personal (1996)',

'Valiant (2005)',

'Van Helsing (2004)",

'Victor Frankenstein (2015)',

'Village of the Damned (1995)',

'Virtuosity (1995)',

'"Wirus (1999)°',

'"WALLA-E (2008)',

'Wagons East (1994)',

'Walkabout (1971)°',

'Walker (1987)',

'Walking Dead, The (1995)',

'Wallace & Gromit in The Curse of the Were-Rabbit (2005)',

'Wallace & Gromit: The Wrong Trousers (1993)',

'War of the Worlds, The (1953)°',

'Watch Out for the Automobile (Beregis avtomobilya) (1966)',

'Way of the Dragon, The (a.k.a. Return of the Dragon) (Meng long guo jian
g) (1972)",

"We're Back! A Dinosaur's Story (1993)",

'Were the World Mine (2008)°',

'What Dreams May Come (1998)°',

'What Happened Was... (1994)',

'What Planet Are You From? (2000)°',

"What's Love Got to Do with It? (1993)",

'When Night Is Falling (1995)°',

'Wild Bunch, The (1969)"',

'Wild Things (1998)',

'Wild Wild West (1999)°',

'Wild, The (2006)"',

"William Shakespeare's A Midsummer Night's Dream (1999)",

'Willow (1988)"',

'Wing Commander (1999)°',

'Wings of Desire (Himmel Aiber Berlin, Der) (1987)°',

'Witches, The (1990)',

'Wiz, The (1978)',

'Wizards of Waverly Place: The Movie (2009)',

'"Wolf Creek (2005)',

"World's End, The (2013)",

'Yellow Submarine (1968)°',

'Yojimbo (1961)',

'Young Guns II (1990)',

"Young Poisoner's Handbook, The (1995)",

'Your Highness (2011)',

'Zathura (2005)"',

'"AiThree Amigos! (1986)'}

Model evaluation with KNN

Here the model is evaluated on based of if there is exact match of genres with the
genres of movie which is already watch by user

from sklearn.neighbors import KNeighborsClassifier

def get_movie_label(movie_id):
Get the cluster label to which movie belongs by KNN algorithm.
:param movie_id: movie id
:return: genres label to movie belong
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classifier = KNeighborsClassifier(n_neighbors=5)

x= tfidf_movies_genres_matrix

y = df_movies.iloc[:,-1]

classifier.fit(x, y)

y_pred = classifier.predict(tfidf_movies_genres_matrix[movie_id])
return y_pred

true_count = 0
false_count = 0
def evaluate_content_based model():

Evaluate content based model.
for key, colums in df_movies.iterrows():
movies_recommended_by_model = get_recommendations_based_on_genres(c«
predicted_genres = get_movie_label(movies_recommended_by_model. ind¢
for predicted_genre in predicted_genres:
global true_count, false_count

if predicted_genre == colums['"genres"]:
true_count = true_count+l
else:
# print(colums["genres"])
# print(predicted_genre)

false_count = false_count +1
evaluate_content_based_model()
total = true_count + false_count
print("Hit:"+ str(true_count/total))
print("Fault:" + str(false_count/total))

Hit:0.8776739889139807
Fault:0.1223260110860193

from sklearn.metrics import pairwise_distances
from scipy.spatial.distance import cosine, correlation

df_movies = movies
df_ratings = ratings

Collaborative Filtering

Types of collaborative filtering techniques

e Memory based
= User-Iltem Filtering
m |tem-Item Filtering
¢ Model based
= Matrix Factorization

= Clustering
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= Deep Learning

Techniques

Memory based
approach

Collaborative
Filtering (CF)

Model based
approach

Memory Based Approach

Definitions

Find similar users based on cosine
similarity or pearson correlation
and take weighted avg. of ratings

Use machine learning to find user
ratings of unrated items. e.g. PCA,
SVD, Neural Nets, Matrix
Factorization

Advantage/
Disadvantage

Advantage
Easy creation and
explanability of results

Disadvantage
Performance reduces
when data is sparse.

So, non scalable

Advantage
Dimentionality
reduction deals with
missing/ sparse data

Disadvantage
Inference is intracable
because of
hidden/latent factors

User-based filtering

Item-based filtering

In either scenario, we builds a similarity matrix. For user-user collaborative filtering, the

user-similarity matrix will consist of some distance metrics that measure the similarity

between any two pairs of users. Likewise, the item-similarity matrix will measure the

similarity between any two pairs of items.

There are 3 distance similarity metrics that are usually used in collaborative filtering:

¢ Jaccard Similarity
¢ Cosine Similarity
e Pearson Similarity

ltem-Item Filtering
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Iltem-item collaborative filtering, or item-based, or item-to-item, is a form of
collaborative filtering for recommender systems based on the similarity between items
calculated using people's ratings of those items.

Iltem-item collaborative filtering was invented and used by Amazon.com

ltem-based filtering

m Purchases

ITEM-ITEM collaborative filtering look for items that are similar to the articles that user
has already rated and recommend most similar articles. But what does that mean when
we say item-item similarity? In this case we don’t mean whether two items are the same
by attribute like Fountain pen and pilot pen are similar because both are pen. Instead,
what similarity means is how people treat two items the same in terms of like and dislike.

It is quite similar to previous algorithm, but instead of finding user's look-alike, we try
finding movie's look-alike. Once we have movie's look-alike matrix, we can easily
recommend alike movies to user who have rated any movie from the dataset. This
algorithm is far less resource consuming than user-user collaborative filtering. Hence,
for a new user, the algorithm takes far lesser time than user-user collaborate as we don't
need all similarity scores between users. And with fixed number of movies, movie-movie
look alike matrix is fixed over time.

Implementation of Item-Item Filtering
In [37]: df_movies_ratings=pd.merge(df_movies, df_ratings)

In [38]: df_movies_ratings
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100831

100832

100833

100834

100835

movield

1

193581

193583

193585

193587

193609

title

Toy
Story
(1995)

Toy
Story
(1995)

Toy
Story
(1995)

Toy
Story
(1995)

Toy
Story
(1995)

Black
Butler:
Book
of the
Atlantic
(2017)

No
Game
No
Life:
Zero
(2017)

Flint
(2017)

Bungo
Stray
Dogs:
Dead
Apple
(2018)

Andrew
Dice
Clay:
Dice
Rules
(1991)

100836 rows x 6 columns

Recommendation_system_thesis

genres

Adventure|Animation|Children|Comedy|Fantasy

Adventure|Animation|Children|Comedy|Fantasy

Adventure|Animation|Children|Comedy|Fantasy

Adventure|Animation|Children|Comedy|Fantasy

Adventure|Animation|Children|Comedy|Fantasy

Action|Animation|Comedy|Fantasy

Animation|Comedy|Fantasy

Drama

Action|Animation

Comedy

userld

15

17

184

184

184

184

331

rating

4.0

4.0

4.5

2.5

4.5

4.0

315

3.5

315

4.0

times

9649¢

84743

110663

151057

130569

153710

153710

153710

15371

16371¢

Here Pivot table function is used as we want one to one maping between movies, user

and their rating. So by default pivot_table command takes average if we have multiple

values of one combination.

ratings_matrix_items

(9724, 610)

df_movies_ratings.pivot_table(index=["'movieId'],colur
ratings_matrix_items.fillna( @, inplace = True )
ratings_matrix_items.shape
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ratings_matrix_items

userld 1 2 3 4 5 6 7 8 9 10 .. 601 602 603 604 605 606
0 40 00 00 00O 40 00O 45 00 00 0O .. 40 00 40 30 40 25

1 00 00 00 00 00 40 00 40 00 00O .. 0O 40 00 5O 35 00

2 40 00 00 00O 0O 50 00O 00 0O 0O .. 0O OO OO0 00 0.0 00

3 00 00 00 0O 00O 30 00O 0O 0O OO .. 0O OO 00 00 0.0 o0.0

4 00 00 00 00O 00 50 00 00 00 0O .. 0O 00 O00 30 00 00
9719 00 00 00 00 00 00 00O 00O 00O OO .. 0O 00 00 00 00 o000
9720 00 00 00 00O 0O 0O 0O 0O 00O OO .. 00 00O 00 00 00 00
9721 00 00 00 00 00 00O 00O 00O 00O 0O .. 0O 0O OO 00 0.0 0.0
9722 00 00 00 00 00 00 0O 00O 00O OO .. 0O 00 00 00 0.0 O00
9723 00 00 00 00O 00O 0O 0O 0O 00 OO .. 00 00 00 00 00 00

9724 rows x 610 columns

movie_similarity = 1 - pairwise_distances( ratings_matrix_items.to_numpy(),
np.fill_diagonal( movie_similarity, @ ) #Filling diagonals with @s for futu
ratings_matrix_items = pd.DataFrame( movie_similarity )
ratings_matrix_items

0 1 2 3 4 5 6 7
0 0.000000 0.410562 0.296917 0.035573 0.308762 0.376316 0.277491 0.131629 O
1 0.410562 0.000000 0.282438 0.106415 0.287795 0.297009 0.228576 0.172498 O
0.296917 0.282438 0.000000 0.092406 0.417802 0.284257 0.402831 0.313434 0

0.035573 0.106415 0.092406 0.000000 0.188376 0.089685 0.275035 0.158022 O

A W N

0.308762 0.287795 0.417802 0.188376 0.000000 0.298969 0.474002 0.283523 O

9719 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 O
9720 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 O
9721 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 O
9722 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 O

9723 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 O

9724 rows x 9724 columns

Below function will take the movie name as a input and will find the movies which are
similar to this movie. This function first find the index of movie in movies frame and then
take the similarity of movie and align in movies dataframe so that we can get the
similarity of the movie with all other movies.
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def item_similarity(movieName):
min
recomendates similar movies
:param data: name of the movie

try:
#user_inp=input('Enter the reference movie title based on which rec
user_inp=movieName
inp=df_movies[df_movies['title']l==user_inp].index.tolist()
inp=inp[0]

df_movies['similarity'] = ratings_matrix_items.iloc[inp]

df_movies.columns = ['movie_id', 'title', 'release_date', 'similarit
except:

print("Sorry, the movie is not in the database!")

Here we provide the user id of the user for which we have to recommend movies. Then
we find the movies which are rated 5 or 4.5 by the user for whom we want to
recommend movies. We are finding this because as we know that in Item-Item similarity
approach we recommended movies to the user based on his previous selection. So to
foster our algorithm we are finding movies which are liked by the user most and on
bases of that we will recommend movies with are similar to movies highly rated by the
user. Then our function has appended the similarity of the movie highly rated by the user
to our movies data frame. Now we will sort the frame as per the similarity in descending
order so that we can get the movies which are highly similar to movie highly rated bu our
customer. Now we filter the movies which are most similar as per the similarity so if
similarity is greater than 0.45 then we are considering the movies. Now the function
goes ahead and see which all movies user has seen and then filter out the movies which
he has not seen and than recommended that movies to him.

def recommendedMoviesAsperItemSimilarity(user_id):
Recommending movie which user hasn't watched as per Item Similarity
:param user_id: user_id to whom movie needs to be recommended
:return: movields to user
user_movie= df_movies_ratings[(df_movies_ratings.userId==user_id) & df_r
user_movie=user_movie.iloc[0,0]
item_similarity(user_movie)
sorted_movies_as_per_userChoice=df_movies.sort_values( ["similarity"],
sorted_movies_as_per_userChoice=sorted_movies_as_per_userChoice[sorted_r
recommended_movies=1list()
df_recommended_item=pd.DataFrame()
user2Movies= df_ratings[df_ratings['userId']== user_id]['movieId']
for movield in sorted_movies_as_per_userChoice:
if movielId not in user2Movies:
df_new= df_ratings[(df_ratings.movield==movield) ]
df_recommended_item=pd.concat([df_recommended_item,df_new])
best10=df_recommended_item.sort_values(["rating"], ascending = |
return best10['movield’]

def movieIdToTitle(listMovielIDs):

Converting movield to titles
:param user_id: List of movies
:return: movie titles

movie_titles= list()

file:///Users/kaushaldabhi/Documents/kaushal_thesis/Recommendation_system_thesis.html 34/55



29/09/2024, 19:43

for id in listMovielDs:
movie_titles.append(df_movies[df_movies|['movie_id']==id]['title'])
return movie_titles

user_id=50
print("Recommended movies, :\n",movieldToTitle(recommendedMoviesAsperItemSim:

Recommended movies, :
Godfather,
dtype:
dtype:
dtype:
dtype:
dtype:
dtype:
dtype:
dtype:
dtype:

[659
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:

title,
title,
title,
title,
title,
title,
title,
title,
title,

The (1972)

object,
object,
object,
object,
object,
object,
object,
object,
object]

User-Item Filtering

922
510
922
922
659
659
659

1644

Godfather:
Silence of
Godfather:
Godfather:
Godfather,
Godfather,
Godfather,

Recommendation_system_thesis

Part II, The (1974)
the Lambs, The (1991)
Part II, The (1974)
Part II, The (1974)
The (1972)

The (1972)

The (1972)

Willow (1988)

The underlying assumption of the collaborative filtering approach is that if a person A

has the same opinion as a person B on an issue, A is more likely to have B's opinion on a

different issue than that of a randomly chosen person.

Here we find look alike users based on similarity and recommend movies which first

user's look-alike has chosen in past. This algorithm is very effective but takes a lot of

time and resources. It requires to compute every user pair information which takes time.

Therefore, for big base platforms, this algorithm is hard to implement without a very

strong parallelizable system.

Implementation of User-ltem Filtering

In similar way as we did for Itemltem similarity we will create a matrix but here we will

keep rows as user and columns as movield as we want a vector of different users. Then

in similar ways we will find distance and similarity between users.

file:///Users/kaushaldabhi/Documents/kaushal_thesis/Recommendation_system_thesis.html

35/55



29/09/2024, 19:43 Recommendation_system_thesis

ratings_matrix_users = df_movies_ratings.pivot_table(index=['userId'],colum
ratings_matrix_users.fillna( 0, inplace = True )

movie_similarity = 1 - pairwise_distances( ratings_matrix_users.to_numpy(),
np.fill_diagonal( movie_similarity, @ ) #Filling diagonals with @s for futu
ratings_matrix_users = pd.DataFrame( movie_similarity )

ratings_matrix_users

0 1 2 3 4 5 6 7
0 0.000000 0.027283 0.059720 0.194395 0.129080 0.128152 0.158744 0.136968 0.
1 0.027283 0.000000 0.000000 0.003726 0.016614 0.025333 0.027585 0.027257 O.(
0.059720 0.000000 0.000000 0.002251 0.005020 0.003936 0.000000 0.004941 O.

0.194395 0.003726 0.002251 0.000000 0.128659 0.088491 0.115120 0.062969 O

A W N

0.129080 0.016614 0.005020 0.128659 0.000000 0.300349 0.108342 0.429075 O.(

605 0.164191 0.028429 0.012993 0.200395 0.106435 0.102123 0.200035 0.099388 O.!
606 0.269389 0.012948 0.019247 0.131746 0.152866 0.162182 0.186114 0.185142 O.
607 0.291097 0.046211 0.021128 0.149858 0.135535 0.178809 0.323541 0.187233 0.
608 0.093572 0.027565 0.000000 0.032198 0.261232 0.214234 0.090840 0.423993 O.

609 0.145321 0.102427 0.032119 0.107683 0.060792 0.052668 0.193219 0.078153 O.

610 rows x 610 columns

Here now we have similarity of users in colums with respective users in row. So if we find
maximum value in a column we will get the user with highest similarity. So now we can
have a pair of users which are similar.

ratings_matrix_users.idxmax(axis=1)

0 265
1 365
2 312
3 390
4 469
605 473
606 569
607 479
608 339
609 248

Length: 610, dtype: int64

ratings_matrix_users.idxmax(axis=1).sample( 10, random_state = 10 )
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547
241
277
348
218
407
352
97

381
607

Recommendation_system_thesis
76
467
337
454
238
278
45
600
20
479

dtype: int64

similar_user_series= ratings_matrix_users.idxmax(axis=1)
df_similar_user= similar_user_series.to_frame()

df_similar_user.columns=['similarUser']

df_similar_user

A W N

605
606
607
608

609

similarUser
265
365
312
390

469

473
569
479
339

248

610 rows x 1 columns

Below function takes id of the user to whom we have to recommend movies. On basis of

that,

we find the user which is similar to that user and then filter the movies which are

highly rated by the user to recommend them to given user.

movieId_recommended=1ist()

def

getRecommendedMoviesAsperUserSimilarity(userld):
Recommending movies which user hasn't watched as per User Similarity
:param user_id: user_id to whom movie needs to be recommended
:return: movields to user
user2Movies= df_ratings[df_ratings['userId']== userId]['movieId']
sim_user=df_similar_user.iloc[0,0]
df_recommended=pd.DataFrame(columns=["'movield', 'title', 'genres"', 'userld
for movield in df_ratings[df_ratings['userId']l== sim_user]['movieId']:
if movieId not in user2Movies:
df_new= df_movies_ratings[(df_movies_ratings.userId==sim_user) {
df_recommended=pd.concat([df_recommended,df_new])
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best10=df_recommended.sort_values(['rating'], ascending = False )[1
return best10['movield']

user_id=50

recommend_movies= movieIdToTitle(getRecommendedMoviesAsperUserSimilarity(ust
print("Movies you should watch are:\n")

print(recommend_movies)

Movies you should watch are:

[1431 Rocky (1976)

Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:

title, dtype: object, 742 African Queen, The (1951)

title, dtype: object, 733 It's a Wonderful Life (1946)

title, dtype: object, 939 Terminator, The (1984)

title, dtype: object, 969 Back to the Future (1985)

title, dtype: object, 510 Silence of the Lambs, The (1991)

title, dtype: object, 1057 Star Trek II: The Wrath of Khan (1982)
title, dtype: object, 1059 Star Trek IV: The Voyage Home (1986)
title, dtype: object, 1939 Matrix, The (1999)

title, dtype: object]

Evaluating the model

def

get_

get_user_similar_movies( userl, user2 ):

Returning common movies and ratings of same for both the users
:param userl,user2: user ids of 2 users need to compare
:return: movields to user

common_movies = df_movies_ratings[df_movies_ratings.userId == userl].me
df_movies_ratings[df_movies_ratings.userId == user2],
on = "movieId",
how = "inner" )

common_movies.drop(['movield', 'genres_x"', 'genres_y', 'timestamp_x", 'tim
return common_movies

user_similar_movies(587,511)

title_x userld_x rating_x userld_y rating_y

0 Forrest Gump (1994) 587 4.0 511 4.5
1 Life Is Beautiful (La Vita A" bella) (1997) 587 5.0 511 4.5
2 Matrix, The (1999) 587 4.0 511 5.0

Pros and Cons of two methods

Challenges with User similarity

e The challenge with calculating user similarity is the user need to have some prior

purchases and should have rated them.

e This recommendation technique does not work for new users.

e The system need to wait until the user make some purchases and rates them. Only

then similar users can be found and recommendations can be made. This is called

cold start problem.
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Single Value Decomposition

Singular value decomposition is a method of decomposing a matrix into three other

matrices:
Dot product of Movie-A with User-X
gives prediction for Movie-A by User-X
PR AN
Movies D l[n fal:turs) Movies o
{Sparse | Waking | Boyhood | Before =
matrix) | Life Sunset ovie embedding matrix '%-
Jesse 45 4.0 ~ £ |User s
Users L4 embedding a
matrix
Celine 3.5 5.0

A=USVT

Where:
A is an m x n matrix
U is an m x r orthogonal matrix
S is an r x r diagonal matrix
V is an r x n orthogonal matrix

Ui — E uzkskvjk

Note how we've collapsed the diagonal matrix, S, into a vector, thus simplifying the
expression into a single summation. The variables, {s;}, are called singular values and are
normally arranged from largest to smallest:

Sit1 <S8
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The columns of U are called left singular vectors, while those of V are called right
singular vectors.

We know that U and V are orthogonal, that is:

Where | is the identity matrix. Only the diagonals of the identity matrix are 1, with all
other values being 0. Note that because U is not square we cannot say that U
Transpose(U)=l, so U is only orthogonal in one direction.

Using the orthogonality property, we can rearrange (1) into the following pair of
eigenvalue equations:

Data reduction

A typical machine learning problem might have several hundred or more variables, while
many machine learning algorithms will break down if presented with more than a few
dozen. This makes singular value decomposition indispensable in ML for variable
reduction.

We have already seen in Equation (6) how an SVD with a reduced number of singular
values can closely approximate a matrix. This can be used for data compression by
storing the truncated forms of U, S, and V in place of A and for variable reduction by
replacing A with U.

Matrix Factorization

Memory-based collaborative filtering approaches that compute distance relationships
between items or users have these two major issues:

e |t doesn't scale particularly well to massive datasets, especially for real-time
recommendations based on user behavior similarities—which takes a lot of
computations.

e Ratings matrices may be overfitting to noisy representations of user tastes and
preferences. When we use distance based "neighborhood” approaches on raw data,
we match to sparse low-level details that we assume represent the user’s
preference vector instead of the vector itself.
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Reasons to Reduce
Dimensionality

Quicker and more

accurate results from Easier to visualize data
machine learning

methods el

1. Computational issues with > _ }';‘_

large numbers of 7 E>
predictors 3

2. Inability to use certain —— = -
statistical methods when
not enough observations X Y
per predictor exist (such as

regression) . :
_ Easier to data mine
3. Less accurate results if the

data is noisy (model over- with fewer prediCtDrS
fitting)

Thus we need to apply Dimensionality Reduction technique to derive the tastes and
preferences from the raw data, otherwise known as doing low-rank matrix
factorization.

We can discover hidden correlations [ features in the raw data.

We can remove redundant and noisy features that are not useful.

We can interpret and visualize the data easier.

We can also access easier data storage and processing.

Let's try out the same in Python

# Import libraries
import numpy as np
import pandas as pd

# Reading ratings file
ratings = pd.read_csv('ratings.csv', sep=',', encoding='latin-1', usecols=[

# Reading users file
#users = pd.read_csv('users.dat', sep='\t', encoding='latin-1', usecols=["u:

# Reading movies file
movies = pd.read_csv('movies.csv', sep=',', encoding='latin-1', usecols=["'m

n_users = ratings.userId.unique().shape[0]
n_movies = ratings.movield.unique().shape([0]
print('Number of users = ' + str(n_users) + ' | Number of movies = ' + str(i

Number of users = 610 | Number of movies = 9724
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Now we want the format of our ratings matrix to be one row per user and one column per

movie. To do so, we willl pivot ratings to get that and call the new variable Ratings (with

a capital *R).

Ratings

Ratings.head()

movield
userld

1

2
3
4
5

5 rows x 9724 columns

Last but not least, we need to de-normalize the data (normalize by each users mean)
and convert it from a dataframe to a numpy array.

R = Ratings.to_numpy()

1

4.0
0.0
0.0
0.0

2

0.0

0.0

0.0

0.0

3

4.0

0.0

0.0

0.0

4

0.0

0.0

0.0

0.0

40 00 0.0 0.0

#print(R)
user_ratings_mean = np.mean(R, axis =
#print(user_ratings_mean.shape)
print(user_ratings_mean.size)
Ratings_demeaned = R - user_ratings_mean.reshape(-1, 1) ## Making the user_.

610

5

0.0
0.0
0.0
0.0

0.0

ratings.pivot(index

6

4.0
0.0
0.0
0.0

0.0

7

0.0
0.0
0.0
0.0

0.0

8

0.0
0.0
0.0
0.0

0.0

'userId’,

9

0.0
0.0
0.0
0.0

0.0

1)

columns

10

0.0
0.0
0.0
0.0

0.0

='movield', values

193565 193567 193571

0.0
0.0
0.0
0.0

0.0

0.0
0.0
0.0
0.0

0.0

0.0
0.0
0.0
0.0

0.0

With our ratings matrix properly formatted and normalized, we are ready to do some

dimensionality reduction. But first, let's go over the math.

Model-Based Collaborative Filtering

rat:

19357

© © o o

Model-based Collaborative Filtering is based on matrix factorization (MF) which has

received greater exposure, mainly as an unsupervised learning method for latent

variable decomposition and dimensionality reduction. Matrix factorization is widely used

for recommender systems where it can deal better with scalability and sparsity than

Memory-based CF:

e The goal of MF is to learn the latent preferences of users and the latent attributes of

items from known ratings (learn features that describe the characteristics of
ratings) to then predict the unknown ratings through the dot product of the latent
features of users and items.

e When you have a very sparse matrix, with a lot of dimensions, by doing matrix

factorization, you can restructure the user-item matrix into low-rank structure, and

you can represent the matrix by the multiplication of two low-rank matrices, where

the rows contain the latent vector.
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e You fit this matrix to approximate your original matrix, as closely as possible, by

multiplying the low-rank matrices together, which fills in the entries missing in the

original matrix.

For example, let's check the sparsity of the ratings dataset:

sparsity = round(1.0 - len(ratings) / float(n_users *x n_movies), 3)

print('The sparsity level of MovielLenslQ0K dataset is

The sparsity level of MovielLensl1@0K dataset is 98.3%

+ str(sparsity * 1I

A well-known matrix factorization method is Singular value decomposition (SVD). At a

high level, SVD is an algorithm that decomposes a matrix A into the best lower rank (i.e.

smaller/simpler) approximation of the original matrix A. Mathematically, it decomposes A

into a two unitary matrices and a diagonal matrix:

A-m><n

Anxn —

e < s Ymxn| X
= Vi,
(m < n)
X .DD X | Vi
Up +
Yimxn (m >mn)

where A is the input data matrix (users's ratings), U is the left singular vectors (user

"features" matrix), 2 is the diagonal matrix of singular values (essentially

weights/strengths of each concept), and VT is the right singluar vectors (movie

"features" matrix). U and VT are column orthonomal, and represent different things. U

represents how much users "like" each feature and VT represents how relevant each

feature is to each movie.

To get the lower rank approximation, | take these matrices and keep only the top k

features, which can be thought of as the underlying tastes and preferences vectors.

Setting Up SVD

Scipy and Numpy both have functions to do the singular value decomposition. We are

going to use the Scipy function svds because it let's us choose how many latent factors

we want to use to approximate the original ratings matrix (instead of having to truncate it

after).
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from scipy.sparse.linalg import svds
U, sigma, Vt = svds(Ratings_demeaned, k = 50)

print('Size of sigma: ' , sigma.size)
Size of sigma: 50

As we are going to leverage matrix multiplication to get predictions, we willl convert the
Y2 (now are values) to the diagonal matrix form.

sigma = np.diag(sigma)

print('Shape of sigma: ', sigma.shape)

print(sigma)

Shape of sigma: (50, 50)

[[ 67.86628347 0. 0. 0. 0.
0. ]
[ o. 68.1967072 0. 0. 0.
0. ]
[ o. 0. 69.02678246 ... 0. 0.
0. ]
[ o. 0. 0. ... 184.86187801 0.
0. ]
[ o. 0 0 0. 231.22453421
0. ]
[ o. 0. 0. 0. 0.

474.20606204] 1]

print('Shape of U: ', U.shape)
print('Shape of Vt: ', Vt.shape)

Shape of U: (610, 50)
Shape of Vt: (50, 9724)

Making Predictions from the Decomposed Matrices

We now have everything we need to make movie ratings predictions for every user. We
can do it all at once by following the math and matrix multiply U, 2, and V' T back to get
the rank £ = 50 approximation of A.

But first, we need to add the user means back to get the actual star ratings prediction.

all_user_predicted_ratings = np.dot(np.dot(U, sigma), Vt) + user_ratings_me:

print('All user predicted rating : ', all_user_predicted_ratings.shape)
All user predicted rating : (610, 9724)

With the predictions matrix for every user, we can build a function to recommend movies
for any user. We return the list of movies the user has already rated, for the sake of

comparison.

We will use the column names from the ratings df
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print('Rating Dataframe column names', Ratings.columns)

Rating Dataframe column names Int64Index( [ 1, 2, 3, 4,
5, 6; 7! 8'
9, 10,

193565, 193567, 193571, 193573, 193579, 193581, 193583, 193585,
193587, 193609],
dtype='int64', name='movieId', length=9724)

preds = pd.DataFrame(all_user_predicted_ratings, columns = Ratings.columns)
preds.head()

movield 1 2 3 4 5 6 7
0 2167328 0.402751 0.840184 -0.076281 -0.551337 2.504091 -0.890114 -0.026
1 0.211459 0.006658 0.033455 0.017419 0.183430 -0.062473 0.083037 0.024
2 0.003588 0.030518 0.046393 0.008176 -0.006247 0.107328 -0.012416  0.003
3 2.051549 -0.387104 -0.252199 0.087562 0.130465 0.270210 0.477835 0.04C

4 1.344738 0.778511 0.065749  0.111744  0.273144 0.584426 0.254930 0.128

5 rows x 9724 columns

Now we write a function to return the movies with the highest predicted rating that the
specified user hasn't already rated. Though we didn't use any explicit movie content
features (such as genre or title), we will merge in that information to get a more
complete picture of the recommendations.

def recommend_movies(predictions, userID, movies, original_ratings, num_rec
Implementation of SVD by hand
:param predictions : The SVD reconstructed matrix,
userID : UserId for which you want to predict the top rated movies,
movies : Matrix with movie data, original_ratings : Original Rating mat|
num_recommendations : num of recos to be returned
:return: num_recommendations top movies
# Get and sort the user's predictions
user_row_number = userID - 1 # User ID starts at 1, not 0
sorted_user_predictions = predictions.iloc[user_row_number].sort_values

# Get the user's data and merge in the movie information.

user_data = original_ratings[original_ratings.userId == (userID)]

user_full = (user_data.merge(movies, how = 'left', left_on = 'movield',
sort_values(['rating'], ascending=False)

)

print('User {0} has already rated {1} movies.'.format(userID, user_full
print('Recommending highest {0} predicted ratings movies not already ra-

# Recommend the highest predicted rating movies that the user hasn't set
recommendations = (movies|[~movies|['movieId'].isin(user_full['movieId']).
merge(pd.DataFrame(sorted_user_predictions).reset_index(), how = '
left_on = 'movield',
right_on = 'movield').
rename(columns = {user_row_number: 'Predictions'}).
sort_values('Predictions', ascending = False).
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iloc[:num_recommendations, :-1]

)

return user_full, recommendations

Let's try to recommend 20 movies for user with ID 150.

already_rated, predictions = recommend_movies(preds, 150, movies, ratings, -

User 150 has already rated 26 movies.
Recommending highest 20 predicted ratings movies not already rated.

# Top 20 movies that User 1310 has rated
already_rated.head(20)
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25

12

17

23

20

19

15

24

22

21

18

16

14

# Top 20 movies that User 1310 hopefully will enjoy

userld

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

movield

1356

32

141

648

25

36

52

805

780

733

608

1073

786

784

653

628

494

predictions
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rating

5.0

5.0

5.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0
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timestamp

854203229

854203071

854203072

854203072

854203123

854203072

854203123

854203163

854203230

854203071

854203123

854203123

854203163

854203163

854203163

854203163

854203124

854203229

854203124

854203124

title

Star Trek: First
Contact (1996)

Twelve Monkeys

(a.k.a.12

Monkeys) (1995)

Birdcage, The

(1996)
Mission:
Impossible
(1996)
Heat (1995)

Leaving Las
Vegas (1995)

Dead Man

Walking (1995)

Mighty

Aphrodite (1995)

Time to Kill, A

(1996)

Independence
Day (a.k.a. ID4)

(1996)

Rock, The
(1996)

Fargo (1996)

Willy Wonka &
the Chocolate
Factory (1971)

Eraser (1996)

Cable Guy, The

(1996)

Dragonheart
(1996)

Grumpier Old
Men (1995)

Primal Fear
(1996)

Executive

Decision (1996)

Father of the
Bride Part Il
(1995)

genres

Action|Adventure|Sci-Fi|Thriller

Mystery|Sci-Fi|Thriller

Comedy

Action|Adventure|Mystery|Thriller

Action|Crime|Thriller

DramalRomance

Crime|Drama

Comedy|DramalRomance

Drama|Thriller

Action|Adventure|Sci-Fi|Thriller

Action|Adventure|Thriller

Comedy|Crime|Drama|Thriller

Children|Comedy|Fantasy|Musical

Action|DramalThriller

Comedy|Thriller

Action|Adventure|Fantasy

Comedy|Romance

Crime|Dramal|Mystery|Thriller

Action|Adventure|Thriller

Comedy
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574

21

607

12

87

558

599

886

634

565

1047

80

532

587

621
523

103

These look like pretty good recommendations.

movield

736

1

260

802

17

112

708

788

1210

852
719
1393
104

14

661

762

9
832
637

140

Recommendation_system_thesis

title
Twister (1996)

Toy Story (1995)

Star Wars: Episode IV - A New

Hope (1977)

Phenomenon (1996)

Sense and Sensibility (1995)

Rumble in the Bronx (Hont faan

kui) (1995)

Truth About Cats & Dogs, The

(1996)

Nutty Professor, The (1996)

Star Wars: Episode VI - Return of

the Jedi (1983)

Tin Cup (1996)
Multiplicity (1996)
Jerry Maguire (1996)
Happy Gilmore (1996)
Nixon (1995)

James and the Giant Peach
(1996)

Striptease (1996)
Sudden Death (1995)
Ransom (1996)

Sgt. Bilko (1996)

Up Close and Personal (1996)

genres
Action|Adventure|Romance|Thriller

Adventure|Animation|Children|Comedy|Fantasy
Action|Adventure|Sci-Fi

DramalRomance

DramalRomance

Action|Adventure|Comedy|Crime

Comedy|Romance
Comedy|Fantasy|Romance|Sci-Fi
Action|Adventure|Sci-Fi

Comedy|DramalRomance
Comedy

DramalRomance
Comedy

Drama
Adventure|Animation|Children|Fantasy|Musical

Comedy|Crime
Action
Crime|Thriller
Comedy

DramalRomance

It's good to see that, although we didn't

actually use the genre of the movie as a feature, the truncated matrix factorization

features "picked up" on the underlying tastes and preferences of the user. We have

recommended some Action, Adventure, Romance, Thriller movies - all of which were

genres of some of this user's top rated movies.

Model Evaluation

Can't forget to evaluate our model, can we?

Instead of doing manually like the last time, we will use the Surprise library that provided

various ready-to-use powerful prediction algorithms including (SVD) to evaluate its

RMSE (Root Mean Squared Error) on the MovieLens dataset. It is a Python scikit building

and analyzing recommender systems.

# Import libraries from Surprise package

import surprise
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from surprise import SVD, Reader

from surprise import Dataset

from surprise.model_selection import cross_validate
from surprise.model_selection import KFold

# Load Reader library
reader = Reader()

# Load ratings dataset with Dataset library
data = Dataset.load_from_df(ratings[['userId', 'movield', 'rating']], reade

# Split the dataset for 5-fold evaluation
#data.split(n_folds=5)

kf = KFold(n_splits=5)
kf.split(data)

<generator object KFold.split at 0x12ceedf20>
# Use the SVD algorithm.
svd = SVD()

# Compute the RMSE of the SVD algorithm.
#evaluate(svd, data, measures=['RMSE'])

cross_validate(svd, data, measures=['RMSE', 'MAE'], cv=5, verbose=True)

Evaluating RMSE, MAE of algorithm SVD on 5 split(s).

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Std
RMSE (testset) 0.8787 0.8671 0.8752 0.8722 0.8743 0.8735 0.0038

MAE (testset) 0.6772 0.6652 0.6696 0.6710 0.6705 0.6707 0.0039
Fit time 5.52 5.23 5.03 5.09 5.006 5.19 0.18
Test time 0.16 0.14 0.14 0.14 0.24 0.16 0.04

{'test_rmse': array([0.8787132 , 0.86712917, 0.87519903, 0.87220126, 0.8743
37221),

'test_mae': array([0.67720385, 0.66516829, 0.6696205 , 0.67098869, 0.67054
5371),

'fit_time': (5.5246899127960205,

5.228315114974976,

5.030495882034302,

5.091771841049194,

5.063137054443359),

'test_time': (0.15938782691955566,

0.1427910327911377,

0.14094209671020508,

0.14005708694458008,

0.23831486701965332) }

We get a mean Root Mean Square Error of 0.87 which is pretty good. Let's now train on
the dataset and arrive at predictions.

trainset = data.build_full_trainset()
svd.fit(trainset)
<surprise.prediction_algorithms.matrix_factorization.SVD at 0x12c7ael30>

We will pick again user with ID 150 and check the ratings he has given.

ratings[ratings['userId'] == 150]
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userld movield rating timestamp

22277 150 3 3.0 854203124
22278 150 5 3.0 854203124
22279 150 6 4.0 854203123
22280 150 7 3.0 854203124
22281 150 25 4.0 854203072
22282 150 32 5.0 854203071
22283 150 36 40 854203123
22284 150 52 4.0 854203163
22285 150 58 3.0 854203163
22286 150 62 3.0 854203072
22287 150 79 3.0 854203229
22288 150 95 3.0 854203072
22289 150 141 5.0 854203072
22290 150 376 3.0 854203124
22291 150 494 3.0 854203124
22292 150 608 4.0 854203123
22293 150 628 3.0 854203229
22294 150 648 4.0 854203072
22295 150 653 3.0 854203163
22296 150 733 4.0 854203123
22297 150 780 4.0 854203071
22298 150 784 3.0 854203163
22299 150 786 3.0 854203163
22300 150 805 4.0 854203230

22301 150 1073 3.0 854203163

22302 150 1356 5.0 854203229

Now let's use SVD to predict the rating that User with ID 150 will give to a random movie
(let's say with Movie ID 1994).

svd.predict (150, 1994)

Prediction(uid=150, iid=1994, r_ui=None, est=3.5987436795302594, details=
{'was_impossible': False})

For movie with ID 1994, | get an estimated prediction of 3.18210. The recommender
system works purely on the basis of an assigned movie ID and tries to predict ratings
based on how the other users have predicted the movie.

svd.predict (150, 100)

Prediction(uid=150, iid=100, r_ui=None, est=3.304750834809633, details={'wa
s_impossible': Falsel})
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svd.predict (150, 194)

Prediction(uid=150, iid=194, r_ui=None, est=3.7534718598619397, details={'w
as_impossible': False})

svd.predict (150, 190)

Prediction(uid=150, 1id=190, r_ui=None, est=3.315415422759387, details={'wa
s_impossible': False})

from __ future__ import (absolute_import, division, print_function,
unicode_literals)

from surprise import SVDpp

from surprise import SVD

from surprise import Dataset

from surprise import accuracy

from surprise.model_selection import train_test_split
from surprise.model_selection import GridSearchCV
from surprise.model_selection import cross_validate

# Use movielens-100K
data = Dataset.load_builtin('ml-100k")
trainset, testset = train_test_split(data, test_size=.15)

type(data)

surprise.dataset.DatasetAutoFolds

SVD++

To build a robust recommender system, we need to develop models which factor in both
explicit and implicit user feedback. For our Movielens dataset, a less obvious kind of
implicit data does exist. The dataset does not only tell us the rating values, but also
which movies users rate, regardless of how they rated these movies. In other words, a
user implicitly tells us about her preferences by choosing to voice her opinion and vote a
(high or low) rating. This reduces the ratings matrix into a binary matrix, where “1"
stands for “rated”, and “0" for “not rated”. Admittedly, this binary data is not as vast and
independent as other sources of implicit feedback could be. Nonetheless, we have
found that incorporating this kind of implicit data — which inherently exist in every rating
based recommender system - significantly improves prediction accuracy. SVD++ factors
in this implicit feedback and gives better accuracy as shown below.

algo_svdpp = SVDpp(n_factors=160, n_epochs=10, lr_all=0.005, reg_all=0.1)
algo_svdpp.fit(trainset)

test_pred = algo_svdpp.test(testset)

print("SVDpp : Test Set")

accuracy.rmse(test_pred, verbose=True)

SVDpp : Test Set
RMSE: 0.9377
0.9377385757264571
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We have explored and used Surprise package: This package has been specially
developed to make recommendation based on collaborative filtering easy. It has default
implementation for a variety of CF algorithms.

Evaluating Collaborative Filtering
Hit Ratio It is ratio of number of hits/ Total recommendation
user_id=50

def evaluation_collaborative_svd_model(userId,userOrItem):

hydrid the functionality of Collaborative based and svd based model to

:param userId: userId of user, userOrItem is a boolean value if True it

:return: dataframe of movies and ratings

movieIdsList= list()

movieRatingList=Tist()

movieIdRating= pd.DataFrame(columns=['movieId', 'rating'])

if userOrItem== True:
movieIdsList=getRecommendedMoviesAsperUserSimilarity(userId)

else:
movieIldsList=recommendedMoviesAsperItemSimilarity(user_id)

for movieId in movieldsList:
predict = svd.predict(userId, movield)
movieRatinglList.append([movield,predict.est])
movieIdRating = pd.DataFrame(np.array(movieRatingList), columns=["'m
count=movieIdRating[(movieIdRating['rating'])>=3]['movieId'].count(
total=movieIdRating.shape[0]
hit_ratio= count/total

return hit_ratio

'Hit ratio of User-user collaborative filtering")
evaluation_collaborative_svd_model(user_id, True))
"Hit ratio of Item-Item collaborative filtering")
evaluation_collaborative_svd_model(user_id,False))

print
print
print
print

—_~ o~~~

Hit ratio of User-user collaborative filtering
0.4444444444444444
Hit ratio of Item-Item collaborative filtering
0.8888888888888888
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Hybrid model:

After developing individual models as discussed earlier, we now stack them in order to
get better results.

Content Based Filtering + SVD
Steps:

1. Run Content based filtering and determine the movies which we want to recommend
to the user.
2. Filter and sort the recommendations of CF using SVD predicted ratings.

df_movies=movies
def hybrid_content_svd_model(userId):
hydrid the functionality of content based and svd based model to recomme
:param userId: userId of user
:return: list of movies recommended with rating given by svd model
recommended_movies_by_content_model = get_recommendation_content_model(1
recommended_movies_by_content_model = df_movies[df_movies.apply(lambda T
for key, columns in recommended_movies_by_content_model.iterrows():
predict = svd.predict(userId, columns["movieId"])
recommended_movies_by_content_model. loc[key, "svd_rating"] = predic
# if(predict.est < 2):
# recommended_movies_by_content_model = recommended_movies_by_ct
return recommended_movies_by_content_model.sort_values("svd_rating", ast

hybrid_content_svd_model(user_id)

/usr/local/lib/python3.9/site-packages/pandas/core/indexing.py:1596: Settin
gWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas—doc

s/stable/user_guide/indexing.html#returning—a—-view-versus—a—copy
self.obj[key] = _infer_fill_value(value)

/usr/local/lib/python3.9/site-packages/pandas/core/indexing.py:1763: Settin

gWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas—doc
s/stable/user_guide/indexing.html#returning—a—-view-versus—a—copy
isetter(loc, value)
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movield title genres svd_rating
257 296 Pulp Fiction (1994) Comedy|Crime|DramalThriller 3.636076
46 50 Usual Suspects, The (1995) Crime|Mystery|Thriller 3.625740

Lord of the Rings: The Fellowship of

3638 4993 the Ring, ...

Adventure|Fantasy 3.584074

933 1233 Boot, Das (Boat, The) (1981) Action|Dramal|War 3.498524

Star Wars: Episode IV - A New Hope

224 260 Action|Adventure|Sci-Fi 3.489179

(1977)

Lord of the Rings: The Two Towers,
4137 5952 The (2002) Adventure|Fantasy 3.484158
1702 2289 Player, The (1992) Comedy|Crime|Drama 3.459736
934 1234 Sting, The (1973) Comedy|Crime 3.442752
210 246 Hoop Dreams (1994) Documentary  3.430844
686 904 Rear Window (1954) Mystery|Thriller 3.400115
910 1209 Once Upon a Time in the West Action|DramalWestern  3.396319

(C'era una volta ...

Conclusion

We implemented and evaluated different widely used Movie Recommendation models.
Also, we developed our own models like the hybrid model (Content based + SVD) as
discussed earlier. We evaluated each model with the appropriate evaluation metric. We
implemented novel technique to evaluate collaborative filtering algorithm by using SVD
and hit ratio as a metric

We attempted to build a model-based Collaborative Filtering movie recommendation
sytem based on latent features from a low rank matrix factorization method called SVD
and SVD++. As it captures the underlying features driving the raw data, it can scale
significantly better to massive datasets as well as make better recommendations based
on user's tastes. For SVD model we get an RMSE of 0.87 and for SVD++ model we get
an RMSE of 0.938
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